Role(s) of gravitational loading during developing period on the growth of rat soleus muscle fibers.

نویسندگان

  • Fuminori Kawano
  • Katsumasa Goto
  • Xiao Dong Wang
  • Masahiro Terada
  • Takashi Ohira
  • Naoya Nakai
  • Toshitada Yoshioka
  • Yoshinobu Ohira
چکیده

Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from postnatal day 4 to month 3, and the reloading was allowed for 3 mo in some rats. Single expression of type I myosin heavy chain (MHC) was observed in approximately 82% of fibers in 3-mo-old controls, but the fibers expressing multiple MHC isoforms were noted in the unloaded rats. Although 97% of fibers in 3-mo-old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential role of satellite cells in the growth of rat soleus muscle fibers.

Effects of gravitational loading or unloading on the growth-associated increase in the cross-sectional area and length of fibers, as well as the total fiber number, in soleus muscle were studied in rats. Furthermore, the roles of satellite cells and myonuclei in growth of these properties were also investigated. The hindlimb unloading by tail suspension was performed in newborn rats from postna...

متن کامل

Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle.

The effects of mechanical unloading and reloading on the properties of rat soleus muscle fibers were investigated in male Wistar Hannover rats. Satellite cells in the fibers of control rats were distributed evenly throughout the fiber length. After 16 days of hindlimb unloading, the number of satellite cells in the central, but not the proximal or distal, region of the fiber was decreased. The ...

متن کامل

Ontogenetic, gravity-dependent development of rat soleus muscle.

We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either ...

متن کامل

IP(3)-induced tension and IP(3)-receptor expression in rat soleus muscle during postnatal development.

The present study was designed to examine whether changes in Ca(2+) release by inositol-1,4,5-trisphosphate (IP(3)) in 8-, 15-, and 30-day-old rat skeletal muscles could be associated with the expression of IP(3) receptors. Experiments were conducted in slow-twitch muscle in which both IP(3)-induced Ca(2+) release and IP(3)-receptor (IP(3)R) expression have been shown to be larger than in fast-...

متن کامل

Transcriptional reprogramming during reloading of atrophied rat soleus muscle.

The hypothesis was tested that differential, coregulated transcriptional adaptations of various cellular pathways would occur early with increased mechanical loading of atrophied skeletal muscle and relate to concurrent damage of muscle fibers. Atrophy and slow-to-fast fiber transformation of rat soleus muscle was provoked by 14 days of hindlimb suspension (HS). Subsequent reloading of hindlimb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 108 3  شماره 

صفحات  -

تاریخ انتشار 2010